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Abstract— Rigid body dynamics with contact constraints
can be solved locally using linear complementarity tech-
niques. However, these techniques do not impose the original
constraints and need stabilization. In this paper we show how
constraint stabilization can also be done in a complementar-
ity framework. Our technique effectively eliminates the drift
problem for both equality and inequality constraints and
requires no parameter tweaking. We describe results from
an implemented system, and compare the new technique to
the well known Baumgarte stabilization.

I. I NTRODUCTION

Dynamic simulation of rigid body contact is central to
many aspects of robotics, including manipulation, design,
and haptic interaction in virtual environments. Dynamics
with contact constraints and friction lead to differential
algebraic equations and inequalities, which are difficult
to solve. Recently, these contact problems have been
effectively formulated as linear complementarity problems
(LCPs) [Lot82], [Bar94], [ST96], [AP97]. However, these
techniques used “reduced index” formulations of the dy-
namics [AP98]. They only satisfy the constraints locally
and can drift away from the constraint, and must be “stabi-
lized” to continue to satisfy the constraint. In this paper we
show how this stabilization can be performed in an LCP
framework as well, and ensure that the stabilization steps
also satisfy the inequalities due to contact and friction
constraints. We provide examples from an implemented
system which show that this technique is effective in
stabilizing both equality and inequality constraints due to
contact.

The remainder of the paper is organized as follows. In
Sec. II we describe some related work. Sec. III provides
a brief but complete description of LCP-based formula-
tions of rigid body contact mechanics. Sec. IV describes
constraint stabilization in general. Sec. V describes our
new technique for post-stabilization in an LCP framework.
Sec. VI describes the results, and compares the new
approach to previous approaches.

II. RELATED WORK

We draw from related work in two areas. The first
area is the work on stabilization of ordinary differential
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equations with invariants. The stabilization method that we
will present is based on work by Ascher and Chin [Asc97]
[ACR94]. These papers discuss stabilization methods in
general and post-stabilization in particular as the favoured
method.

The other area of related work is the literature on
rigid body dynamics with contact, where the constrained
dynamics equations and inequalities are formulated as a
linear complementarity problem. The first paper to pose
the contact problem as an LCP was published by Lötstedt
[Lot82]. Baraff presented a method [Bar94] that used an
LCP algorithm by Cottle and Dantzig [CD68] to solve
contact and static friction forces at interactive rates.

One of the difficulties with earlier LCP methods was
that there is no guarantee of the existence of a solution,
in the presence of contact with Coulomb friction. Indeed,
there are known configurations of rigid bodies for which
no solution exists, such as the Painlevé paradox. Using
a model which allows impulsive forces turned out to be
the key to avoiding these problems. Stewart and Trinkle
[ST96] introduced a time-stepping scheme that combines
the acceleration-level LCP with a time step, to obtain an
LCP where the variables are velocities and impulses. An-
itescu and Potra [AP97], described a modification, which
we describe in detail below, that guaranteed solvability
regardless of the configuration or number of contacts.

We unify these two areas of research by showing how
stabilization for simulations with contact can be done
by formulating the post-stabilization problem as linear
complementarity problem.

III. B ACKGROUND

A. Notation

We use a translation vector and a quaternion to represent
the position and orientation of the rigid body. We append
these together in a vectorp. The velocity v of the
body is described by a vector containing the linear and
angular velocity of the body. The state of thei’th body is
described by the vectorspi = (pix piy pizqixqiyqizqiw)T and
vi = (ωixωiyωizvixviyviz)T .

We shall write the Newton-Euler equations of motion
of body i as

f i = M iai (1)



wheref i is the wrench (torque and force) acting on body
i, which includes the Coriolis forces,M i is the the spatial
inertia matrix of the body, andai = v̇i . When dealing with
a system of many bodies, we shall use the symbolsf,
a, and M to indicate vectors and matrices that contain
information for many bodies.

B. Constrained Dynamics

Position constraints will be described by aconstraint
function g(p), which is a function which mapsp, the
position vector of the rigid bodies, to a point inRn, where
n is the number of degrees of freedom that the constraint
removes from the system. If the constraint function returns
a zero vector, then the positionp satisfies the constraint.

Position constraints can be divided intoequality con-
straints (e.g., joint constraints), where the constraint is
g(p) = 0, and inequality constraints(e.g., contact con-
straints), whereg(p)≥ 0. For the rest of this section, we
will just be talking about equality constraints. We will talk
about contact constraints separately in the next section.

Constraining the position of an object also constrains
its velocity. Velocity constraints are of the form

dg
dt

= Jv+c =
(
J1 J2 . . . Jn

)


v1

v2
...

vn

+c = 0. (2)

The matrix J is called the constraint’sJacobian matrix,
which we refer to simply as the Jacobian. The Jacobian is
a function of the current position of the bodies involved
in the constraint. In practice, most constraints will only
involve one or two bodies, so most of the matricesJ1 . . .Jn

will be zero matrices.
A constraint on the acceleration can be found by taking

the derivative again. Doing so results in an equation of
similar form to Equation 2:Jv̇+k = 0. The acceleration
and velocity constraints use the same Jacobian matrix, but
different termsc andk.

When there are many constraints, we will often write
all constraints simultaneously. For a system withn bodies,
and m constraints, our velocity constraint equation looks
like

dg
dt

=


g1

g2
...

gm

 = Jv+c=


J11 J12 . . . J1n

J21 J22 J2n
...

...
...

Jm1 Jm2 . . . Jmn




v1

v2
...

vn

+c= 0.

(3)
The constraint Jacobian matrixJ has a dual use. In

addition to relating the velocities to the rate of change
of the constraint functiong, the rows ofJ act as basis
vectors for constraint forces. Thus, when we solve for the
constraint forces, we actually just need to solve for the
coefficient vectorλ (whose components are theLagrange
multipliers) that contains the magnitudes of the forces that
correspond to each of these basis vectors.

The total force acting on the system is the sum of the
external forcesFext (in which we include Coriolis forces)

and the constraint forcesJTλ . Combining the Newton-
Euler equations,

F = JT
λ +Fext = Mv̇,

with the constraint equationsJv̇ + k = 0, we get the
following system(

M −JT

J 0

)(
v̇
λ

)
=

(
Fext

−k

)
, (4)

which we can solve for the accelerationv̇ and the La-
grange multipliersλ . Baraff [Bar96] shows how to solve
this system in linear time by exploiting the sparse structure
of the matrix on the left hand side of Equation 4. This
sparseness exploitation was previously done in the MEXX
system [LNPE92].

1) Incorporating Contact Constraints:Contact con-
straints are different from joint constraints, and require
special treatment. There are a few important features that
set contact constraints apart from other constraints:

• Contact forces can push bodies apart, but cannot pull
bodies towards each other. This leads to inequalities
in the constraint equations, whereas other types of
constraints are equalities.

• If there are many points of contact between a pair of
bodies, there may be many solutions for the contact
forces that are plausible.

• In the presence of Coulomb friction, a solution to the
dynamics equations may not exist.

There are several methods for handling contact in rigid
body simulations. Mirtich [Mir98] gives a summary of
several different methods, and explains the advantages and
disadvantages of each.

We focus on theLinear Complementarity Problem
approach, first introduced in the context of constrained
mechanical systems by Lötstedt [Lot82], and introduced
to the computer graphics community by Baraff [Bar94].

To describe the contact model we use, we introduce the
following terminology.

• A contact consists of a pair ofcontact points, one
point attached to one rigid body, and the other point
attached to another rigid body. The contact points are
sufficiently close together for our collision detection
algorithm to report a collision.

• A contact normalis a unit vector that is normal to
one or both of the surfaces at the contact points.

• A contact wrenchJTλ is a wrench which prevents
the two rigid bodies from interpenetrating.

• The separation distanceof a contact is the normal
component of the displacement between the two
contact points. It is negative when the bodies are in-
terpenetrating at the contact. The constraint function
g(p) for a contact constraint returns the separation
distance. The constraint is satisfied forg≥ 0.

• The relative normal acceleration aof a contact is
the second derivative of the separation distance with
respect to time. The acceleration constraint is satisfied
whena = Jv̇+k ≥ 0.



Let a be a vector containing the relative normal accel-
erations{a1, ...,an} for all contacts, andλ be a vector
of contact force multipliers{λ1, ...,λn}. The vectorsa
and λ are linearly related. Additionally, we have three
constraints:

1) The relative normal accelerations must be positive:
a = Jv̇+k ≥ 0.

2) The contact force magnitudes must be positive (so
as to push the bodies apart):λ ≥ 0

3) For each contacti, only one ofai ,λi can be nonzero.

The problem of finding a solution to a linear equation
given such constraints is called aLinear Complementarity
Problem(LCP), which we discuss in Section III-B.2.

If we let Je be the Jacobian of equality constraints,
and Jc be the Jacobian of contact constraints, we can
extend Equation 4 to include the contact constraints as
follows [ST96]:0

0
a

−

M −JT
e −JT

c
Je 0 0
Jc 0 0

 v̇
λe

λc

 =

Fext

−ke

−kc

 ,

a≥ 0,λc ≥ 0,aT
λc = 0.

(5)

In this form, we have amixed LCP, meaning that only
some of the rows have complementarity constraints on
them. To obtain a pure LCP, we must eliminatev̇ andλe

by solving for those in terms ofλc.

2) Linear Complementarity Problems:A Linear Com-
plementarity Problem(LCP) is, given an×n matrix M
and an-vector q, the problem of finding values for the
variablesz = {z1,z2, ..,zn} and w = {w1,w2, ..,wn} such
that

w = Mz +q, (6)

and, for all i from 1 to n, zi ≥ 0, wi ≥ 0 and ziwi = 0.
(These three constraints are called thecomplementarity
constraints). We solve the linear complementarity prob-
lems using Lemke’s algorithm [CPS92], [Mur88].

3) Solvable LCPs for Contact with Friction:It is well
known that that when Coulomb friction is added, the
acceleration-level dynamics equations (Equation 5) fail
to have a solution in certain configurations, even for
situations where there is only one contact involved.

Anitescu and Potra [AP97] present a time-stepping
method which combines the acceleration-level LCP with
an integration step for the velocities, arriving at a method
which has velocities and impulses as unknowns, rather
than accelerations and forces. Their method is guaranteed
to have a solution, regardless of the configuration and
number of contacts.

To discretize the system (5), Anitescu and Potra ap-
ply a forward Euler step on the velocities:v̇ ≈ (vnext−
vcurrent)/h, where vcurrent and vnext are the velocities at
the beginning of the current time step, and the next time
step, respectively, andh is the time step size. We then

arrive at the mixed LCP0
0
a

−

M −JT
e −JT

c
Je 0 0
Jc 0 0

vnext

λe

λc

 =

Mvcurrent+hFext

−ke

−kc

 ,

a≥ 0,λc ≥ 0,aT
λc = 0.
(7)

Coulomb friction is introduced by adding some addi-
tional forces and constraints to the LCP (7).

Essentially, these complementarity conditions guarantee
the following properties that we expect from Coulomb
friction:

• If the contact impulse lies inside the friction cone (but
not on its surface), then the bodies are not exhibiting
relative tangential motion.

• If the bodies are in relative tangential motion, then
the contact impulse lies on the surface of the friction
cone, and exhibits negative work.

• As the approximation of the friction cone becomes
closer to the ideal circular friction cone, the friction
becomes closer to directly opposing the relative tan-
gential motion.

Extending Equation 7 to include these friction con-
straints, we get the following linear complementarity
problem


0
0
a
σ

ζ

−


M −JT

e −JT
c −JT

f 0
Je 0 0 0 0
Jc 0 0 0 0
J f 0 0 0 E
0 0 µ −ET 0




vnext

λe

λc

λ f

γ

 =


Mv current +hFext

−ke

−kc

0
0

 ,

a
σ

ζ

≥ 0,

λc

λ f

γ

≥ 0,

a
σ

ζ

T λc

λ f

γ

 = 0.

(8)

Due to lack of space, we refer the reader to [Ani97],
[Cli02] for full details; here it is sufficient to observe that
the general form of the LCP remains the same.

IV. CONSTRAINT STABILIZATION

Fig. 1. An unstabilized simulation of a swinging pendulum.

Figure 1 is an example situation that motivates the
need for stabilization. The figure shows a simple two-
dimensional simulation of a swinging pendulum: one rigid
body with one constraint. The only external force is that
of gravity. The constraint is a hinge joint constraint that



anchors pointA to a fixed point. Over time, however, point
A actually drifts, due to numerical integration errors. The
centre of mass, rather than staying on the circular path that
it is supposedly constrained to (shown with a dashed line),
continues to fall further from that path as time progresses.

We can lessen this problem by using higher order,
more accurate integration scheme (the ones used here are
only first-order accurate), or by using smaller time steps.
However, even using the best integration methods and
small time steps, numerical drift can never be completely
eliminated. Furthermore, it may not always be feasible to
use the more complicated integrators or decrease the step
size and still achieve acceptable performance. Even if we
cannot achieve very high numerical accuracy, we still wish
to have simulations that are plausible – ones where the
constraints are always met. This section describes methods
for counteracting constraint drift using stabilization.

Before continuing, we need to define our problem more
clearly. Stability is a word that is used with a variety of
meanings in different contexts in the differential equation
literature. By the wordstabilizationhere, we meanstabi-
lization of an ODE with respect to an invariant set. We
shall now explain what this means.

The position constraint equation coupled with the con-
strained Newton-Euler equations (see Equation 4) together
are an example of adifferential-algebraic equation(DAE).
This is a term for a system of equations containing
both differential equations and algebraic equations. DAEs
are a relatively new area of research, and the methods
for solving them directly are somewhat difficult. The
usual approach is to convert the DAE into an equivalent
ordinary differential equation (ODE) which can be solved
by conventional techniques. In our case, we can do this
by differentiating the position constraint equations twice,
to arrive at a constraint in terms of accelerations, then
substituting this acceleration constraint into the Newton-
Euler equations. In doing this, we arrive at an ODE. The
approach we use is actually slightly different, as we have
described in Section III-B.3.1

The penalty of this approach is that we lose the con-
straints on the position and velocity. Upon discretization
of the ODE, we introduce numerical errors, and we will
experiencedrift away from theconstraint manifold. The
constraint manifold (also known as theinvariant set) is
the subset of the state space in which the constraints are
satisfied. To counteract this, we must stabilize the ODE
with respect to the invariant set. In other words, we must
alter the ODE so that it has the same solutions as the
original wheneverg(p) = 0, but wheneverg(p) 6= 0 the
solutions is attracted towards the invariant set.

In this section we describe two methods of stabilization,
in the context of rigid body simulation. First we will
discussBaumgartestabilization, a method that is very
popular because of its simplicity. We will then introduce

1We usetime-steppingmethods, where a numerical integration step is
built into the system of equations we solve, and the equations are given
in terms of velocities and impulses, rather than forces and accelerations.

Post-Stabilization, which is based on the work of Ascher
et al. [Asc97] [ACR94]

A. Baumgarte Stabilization

Baumgarte’s stabilization technique [Bau72] is one of
the most familiar and commonly used methods, because of
its simplicity. The idea here is to replace the acceleration
constraint equation̈g = Jv̇ + k = 0 with some a linear
combination of the acceleration, velocity and position
constraint equations:

0 = g̈+αġ+βg, (9)

which creates a more stable ODE. If the velocity and
position constraints are satisfied, the last two terms on the
right hand side vanish, and we are left with the original
acceleration constraint equation. A physical interpretation
of this method is that we are adding additional correc-
tion forces, proportional to the error in the velocity and
position constraints, to counteract drift.

Because our implementation uses only velocity-level
constraints rather than acceleration constraints (see Sec-
tion III-B.3), we use an even simpler version of Baumgarte
stabilization where we replace the velocity constraintġ =
Jv+c = 0 with ġ+αg = Jv+(c+αg) = 0.

The main difficulty of using Baumgarte stabilization is
that it is not always easy to find an appropriate value for
the constantsα andβ .

B. Post-Stabilization

Another approach to stabilization is to follow each
integration step with a stabilization step. The stabilization
step takes the result of the integration step as input, and
gives a correction so that the end result is closer to the con-
straint manifold. Post-stabilization methods are discussed
in detail and compared to other stabilization methods by
Ascher et al. [ACR94]. Here we give interpretation of
post-stabilization that fits into Ascher’s broader definition.

Let p be the position of a set of rigid bodies after
the integration step. Letg be the constraint function (see
Section III-B). In general, due to numerical drift,g(p) 6= 0.
Let G = ∂g

∂p . In our stabilization step, we wish to find some
dp such thatg(p+dp) = 0. Assumingdp will be small,
we can make the approximation that

g(p+dp)≈ g(p)+G(p)dp. (10)

Rearranging this, we see that the stabilization termdp
should satisfy

Gdp =−g(p). (11)

In general,G is not square, soG−1 does not exist. One
way to solve fordp is to use the pseudoinverse ofG:

dp =−(GT(GGT)−1)g(p). (12)

This idea works fine as long asGGT is nonsingular,
which is usually the case for a system that contains
only equality constraints. However, we often run into
singularities when contact constraints are involved. This



is because the collision detector may find many contact
points between a pair of objects, leading to constraints
that are redundant. One approach to deal with singularities
is to use a pseudoinverse formula based on singular value
decomposition ofG. By truncating the small (nearly zero)
singular values, we can find a pseudoinverse ofG even
whenGGT is singular.

Using a singular value decomposition in each time step,
however, would be expensive, and it does not take the
inequality constraints involved in contact into account.
Instead, we find it natural to pose the post-stabilization
problem as an LCP, just as we do with the dynamics
equations. An additional benefit is that we get a more
physically meaningful pseudoinverse. We explain this
method in the next section.

V. FITTING POST-STABILIZATION INTO THE

DYNAMICS LCP FRAMEWORK

As mentioned above, in the absence of contact con-
straints, we can find the stabilization term using the pseu-
doinverse ofG(p) (Equation 12). Doing so is equivalent
to solving the system

−
(

I −G(p)T

G(p) 0

)(
dp
λ

)
=

(
0

g(p)

)
. (13)

In other words, we can express the problem of find-
ing the post-stabilization step as a problem of finding
Lagrange multipliers, just as we did with the dynamics
equations (see Equation 4). We can make 13 look more
like Equation 4 by doing two things:

1) ReplaceG(p) with J(p). These two matrices are
both constraint Jacobians. The difference is thatG
multiplies with changes in position (7-vectors con-
sisting of a translation, plus a quaternion), whereas
J multiplies with twists, which are 6-vectors. As
a result of usingJ, the post-stabilization stepdp
would be a twist and needs to be converted back
into our position representation.2

2) Replace the identity matrix with the mass matrix
M . By doing so, we are no longer using the pseu-
doinverseGT(GGT)−1, but a weighted pseudoin-
verse, M−1GT(GM−1GT)−1. This corresponds to
favouring the position change that requires the least
amount of energy. This way, for example, a rotation
around an axis with low moment of inertia would
be favoured over a rotation around an axis with high
moment of inertia.

Making these two changes gives us

−
(

M −J(p)T

J(p) 0

)(
dp
λ

)
=

(
0

g(p)

)
. (14)

Similar to our dynamics equations for systems with
contact, it is natural to place complementarity constraints
on the variables having to do with the contact constraints.

2Note that in two-dimensional rigid body simulations,G and J are
identical, so this somewhat confusing distinction can be ignored.

• The post-step should never pull contacting bodies
towards each other at the contact points, only push
them apart:λc ≥ 0

• If contact constraint functions were evaluated after
adding the post step, the result must not be negative,
but may be positive:g+

c = (g−c + Jcdp) ≥ 0 (we
use superscripts “-” and “+” to denote “before” and
“after” the post-step. That is,g−c = g(p), and g+

c
approximatesg(p+dp))

• λ T
c g+

c = 0: This constraint roughly means that for
each contactc, either we are pushing the bodies apart
at c or contactc’s constraint will be satisfied in the
absence of any push atc.

Adding the stabilization for contact constraints, we have
the LCP 0

0
g+

c

−

M −JT
e −JT

c
Je 0 0
Jc 0 0

dp
λe

λc

 =

 0
g−e
g−c

 ,

g+
c ≥ 0,λc ≥ 0,λ T

c g+
c = 0.

(15)

VI. RESULTS AND DISCUSSION

A. 6-Link Chain

In the following test of our stabilization method, we
simulate a 6 link chain falling freely under gravity (see
figure 2). At time 0, the chain is completely horizontal. We
observe the change in constraint error over time using one
of three test conditions for comparison: no stabilization,
Baumgarte stabilization, or post-stabilization. We evaluate
the constraint functiong(p) for each constraint, and use
the maximum absolute value as a measure of constraint
error. This number roughly the largest joint separation
distance. For comparison, each link in the chain is 100mm
long. The time step size is 0.001 seconds.

Fig. 2. A simulation of a 6-link chain falling freely under gravity.
Screen clearing between frames is turned off to show motion over time.
There is no constraint stabilization, so error in the constraints is evident
as time progresses (note separation between the lowest two links of the
chain).

Figure 3 shows us how the simulation behaves in the
absence of any stabilization. The error grows over time
as the joints of the chain separate. The graph has stair
steps because of the periodic nature of the swinging chain,
which behaves something like a pendulum. The error
grows rapidly when the chain is moving more quickly.



By the end of 600 time steps (0.6 seconds), the error has
climbed to around 20mm.
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Fig. 3. Maximum constraint error over time, for a simulation of a
swinging 6-link chain without any stabilization

In figures 4 and 5, we see the effect of Baumgarte
stabilization on the error. The choice of constant used in
Baumgarte stabilization has a large effect on how well the
stabilization works. In figure 4, we show two choices of
constant (50 and 200) that seemed to work best for this
situation. Below 50, the error became much larger. With
constant of 50, the maximum error is around 5mm, and
when the constant is 200, we get slightly better results,
with the error never exceeding 3mm.
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Fig. 4. Maximum constraint error over time, for a simulation of a
swinging 6-link chain with Baumgarte stabilization, using a constant of
50 or 200

If the constant is raised higher, the error does not
continue to go down. Instead, we start to notice another
problem: the chain starts to jiggle unrealistically. This cor-
responds to the error correction term growing so large that
it overshoots its goal in a single time step. Figure 5 shows
an example of this, using Baumgarte stabilization with a
constant of 2000. When one watches this simulation, one
notices the chain bouncing around rapidly due to the large
stabilization forces. Correspondingly, the error graph is
quite jagged, although quantitatively the error is not much
worse than when a constant of 50 is used.
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Fig. 5. Maximum constraint error over time, for a simulation of a
swinging 6-link chain with Baumgarte stabilization, using a constant of
2000

We show the results of using post-stabilization in figures
6 and 7. Figure 6 shows two curves: one is the constraint
error measured in each stepbefore the postStabilization
step is applied, and the other is the errorafter the
postStabilization step. Note that the scale in figure 6
is only one tenth that of the scale in the Baumgarte
stabilization graphs above. Even in this scale, the “after
postStabilization” curve is barely perceptible. Figure 7
shows just this curve, on an even smaller scale. The
constraint error in this curve never goes above 0.01mm.
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Fig. 6. Maximum constraint error over time, for a simulation of a
swinging 6-link chain with post-stabilization enabled. Error is shown
both before and after applying the post-stabilization step.

B. Stabilization of Contact Constraints

Contact constraints also have problems with constraint
error. A contact constraint is said to have error if the
separation distance at the contact is less than thecontact
tolerance. Figure 8 shows contact constraint error over a
period of time when a rigid rectangle is pushed around
on the screen by the user. Over this time period, the
body experiences many different kinds of contact: impacts,
resting contacts, sliding contacts and rolling contacts,
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Fig. 7. Maximum constraint error over time, for a simulation of a
swinging 6-link chain with post-stabilization enabled. This graph is a
close-up of the smaller curve in figure 6
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Fig. 8. Contact constraint error over time for a rigid rectangle
undergoing user interaction. No stabilization is used.

sometimes with just one point of contact, sometimes with
more than one (see figure 9 for some examples of typical
motions).

Fig. 9. Two screen captures from a contact simulation with a single
moving rigid rectangle. User is pushing the rectangle interactively using
repulsive forces at the mouse cursor.

When we run the same simulation with post-
stabilization enabled, the constraint errors are eliminated
completely. The post-stabilization scales well to simula-
tions with many bodies and many contacts, such as the
simulation shown in figure 10.

Fig. 10. Two screen captures from a contact simulation with five moving
rigid bodies.

C. Advantages and Disadvantages of Post-Stabilization

Comparing Baumgarte stabilization with our post-
stabilization method, here are some of the trade-offs:

• Baumgarte stabilization uses special constants that
must be carefully set by hand. Post-stabilization does
not require any tweaking.

• With post-stabilization, the constraint error usually is
eliminated in the same time step that it is created.
With Baumgarte stabilization, the constraint error
cannot begin to affect the motion until one step later.
Usually it takes several time steps for the error to
dissipate completely. The amount of time it takes
to absorb the constraint error depends on the values
for the special constants. If the constants are too
small, then the error will dissipate slowly. If the
constants are too large, the stabilization will over-
correct, causing jerky oscillations of the bodies.

• Baumgarte stabilization is easier to implement, and
involves very little extra computation per time step.
It only involves measuring the constraint error and
adjusting the constantk in the constraint equation
Jv + k = 0. Post-stabilization actually requires for-
mulating and solving another mixed LCP in addition
to the dynamics LCP. This is quite a large penalty
because solving these LCPs is one of the main
bottlenecks in simulation performance.3

• Post-stabilization can perform poorly when there are
large errors in the constraints. This is because the
linear approximation made in Equation 10 becomes
a poor approximation. Usually this results in a dis-
turbing crash of the simulation, with the bodies flying
off wildly. It is also possible for the bodies to jump
into interpenetration during the post-step in some
circumstances. This can be helped some by restricting
the size of the post-step, and taking multiple post-
steps in the same time step, but with the penalties of
having to solve more systems, and having to choose
thresholds. In our experience, Baumgarte stabilization
seems to perform better when there is a lot of
constraint error, especially if the constants used are
not too large.

3Recently, (after the present work was completed) Anitescu and Hart
[AH02] have shown how the stabilization described in the paper can be
done while solving a modification of the LCP (7). This saves the cost
of solving a second LCP.



VII. C ONCLUSION

We described a new technique for performing post-
stabilization of contact constraints in a linear comple-
mentarity framework. Our approach requires no parameter
tweaking and is effective in eliminating the drift problem.
We presented examples that show the effectiveness of
the technique, and discussed the tradeoffs in comparison
to previous techniques. Thus constraint stabilization and
dynamics simulation are unified in the same framework,
which simplifies the design of contact simulation software.
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